$$ZnC1_2$$ and CuC1 promoted aldol reactions of isocyanoacetate with $\alpha,\beta-$ unsaturated carbonyl compounds

Yoshihiko Ito^{*}, Takaharu Matsuura and Takeo Saegusa Department of Synthetic Chemistry, Kyoto University, Kyoto 606, Japan

Abstract: Reaction of ethyl isocyanoacetate with α , β -unsaturated carbonyl compounds was promoted by a stoichiometric amount of ZnCl₂ or a catalytic amount of CuCl/Et₃N (1:1) to give 5-alkenyl-4-carboethoxyoxazolines (3) in moderate yields. The oxazolines (3) were converted by palladium catalyst to 2-formamino-2,4-alkadienoic acid ethyl esters (5).

Synthetic utility of isocyanides has been widely developed, since α -metalation of isocyanides was accomplished by schöllkopf.¹⁾ Carbon-carbon bond formation with the α -metalated isocyanide provides a convenient method for α -aminoalkylation, because the resultant isocyanide is readily hydrolyzed to the corresponding primary amine. α -Isocyanoacetate, which has more acidic α -hydrogen, was easily deprotonated even with mild bases such as triethylamine and potassium carbonate and reacted with acetaldehyde to afford β -hydroxy- α -isocyanobutyrate, of which acid hydrolysis provided threonine.²⁾

Herein, we wish to describe that ZnCl_2 and CuCl promoted reactions of ethyl α -isocyanoacetate (1) with α , β -unsaturated aldehydes and ketones (2) to give 5-alkenyl-4-carboethoxy oxazolines (3) in moderate to good yields. Use of triethylamine instead of ZnCl_2 and CuCl in the reaction gave rise to a complex mixture of products including low yield of 3.

A stoichiometric amount of ZnCl₂ promoted the reaction of isocyanoacetate with α , β -unsaturated aldehydes and ketones in THF at room temperature, although the reaction proceeded slowly over 20-30 hr. The progress of the reaction was monitored by IR absorption band at 2150 cm⁻¹, which is ascribed to $\nu_{N\equiv C}$ of the isocyanide. However, a rise in the reaction temperature resulted in lower yields of **3**.

A sample procedure for the ZnCl_2 promoted reaction of α -isocyanoacetate with α,β -unsaturated carbonyl compounds is as follows. A mixture of (E)-crotonaldehyde (2.4 mmol), ethyl isocyanoacetate (2.0 mmol) and anhydrous ZnCl_2 (2.0 mmol) in THF (1.5 mL) was stirred at room

temperature for 25 hr. The reaction mixture was poured into aqueous $NaHCO_3$ and extracted with methylene chloride. The methylene chloride extract was dried on anhydrous Na_2CO_3 and distilled to give a 5 : 2 mixture of trans and cis-5-((E)-1- propeny1)-4-carboethoxyoxazoline (**3a**) [bp 98-100°C (1 mmHg)].³⁾ Some ZnCl₂ promoted syntheses of oxazoline derivatives **3** are summarized in Table 1.

	$R(R')C - CHCO_2C_2H_5$	Yield (%) (trans:cis)
RCOR '	Ċ, Ċ, Ľ,	ZnC1 ₂	CuCl/NEt ₃
(E)-CH ₃ CH=CHCHO (la)	За	95(5:2)	60(4:1)
(E)-CH ₃ CH ₂ CH ₂ CH=CHCHO (1b)	3b	72(3:1)	
$(E) - (CH_3)_2^2 C = CHCH_2CH_2C(CH_3) = CHCHO (1c)$.) 3c	59(2 : 1)	
(E)-PhCH=CHCHO (1d)	3d	66(5 : 2)	75(–)
(E)-CH ₃ CH=C(CH ₃)CHO (1e)	3e	67(5 : 3)	
$CH_2 = CHCHO$ (1f)	3f	55(2:1)	
2-Čyclohexenone (1g)	Зg	29(1 : 1)	
СН ₃ СН=СНСОСН ₃ (1 h)	3h	59(5 : 3)	
PhCHO (1i)	 3i	64(7 : 1)	
2-Furaldehyde (1j)	3j	87(5:1)	
CH ₃ CHO (1k)	3k	13(-)	∿100(2 : 1)
$(C_2H_5)_2$ CHCHO (11)	31	7(-)	75 ¹⁾

Table 1.

1) Trans isomer was exclusively produced.

Noteworthy is that acrolein (1f), which is readily polymerized by not only base, but also CuCl catalyst, gave the desired 5-vinyl-4-carboethoxyoxazoline (3f) in moderate yield. $ZnCl_2$ was also effective for the reaction with aromatic aldehydes. However, $ZnCl_2$ gave poor results with aliphatic aldehydes, being interestingly compared with CuCl catalyst, which is described below.

Unlike with $2nCl_2$, a catalytic amount of CuCl was enough to induce the reaction of isocyanoacetate with α,β -unsaturated aldehydes. The CuCl catalyzed reaction was much slower in THF at room temperature, taking no less than 2 days. However, it is noted that an addition of one or two equivalent of amine⁴⁾ to the CuCl catalyst caused a remarkable acceleration of the reaction rate. The reaction of crotonaldehyde with ethyl isocyanoacetate in the presence of 5 mol % of CuCl and 5 mol% of triethylamine in THF was almost complete in ca. 10 hr at room temperature. The CuCl/amine (1:1) catalyst was also an excellent catalyst for the reaction with aliphatic aldehydes as shown in the Table 1.

The marked difference of the $2nCl_2$ and CuCl catalysts in the present reaction is further demonstrated in a following reaction, which led to different products depending on the use of $2nCl_2$ and CuCl. Reaction of methyl vinyl ketone with ethyl isocyanoacetate was carried out in

the presence of $ZnCl_2$ and $CuCl/Et_3N$ catalyst to afford the expected oxazoline (**3m**) (47% yield) and pyrroline derivative (**4**) (44% yield)⁵⁾, respectively.⁶⁾

The present synthesis of 5-(1-alkeny1)-4-carboalkoxyoxazolines (3) provides a convenient access to α -amino acid derivatives from glycine, because the oxazoline structure is easily hydrolyzed to the corresponding amino alcohol. Finally, we describe a palladium catalyzed conversion of 3 so far prepared to α -amino acid derivatives. For instance, 5-viny1-4-carbo-ethoxyoxazoline (3f) was converted to 2-formamino-2,4-pentadienoic acid ethy1 ester (5a) on treatment with 2.5 mol% Pd(OAc)₂ and 5 mol% PPh₃ in THF at room temperature. Some preparations of 2-formamino-2,4-alkadienoic acid esters (5)⁷ are summarized in Table 2.

3 ·	Pd(OAc) ₂	R^1 CH=CHC(HC(R ²)=C(NHCHO)CO	
			5	
R ¹	R ²	Conditions	(Yield %)	
Н	Н	r.t., 1 hr	89 (5 a)	
CH3	Н	r.t., 1 hr	100 (5b)	
CH3	CH3	r.t., 2 days	97 (5c)	
(CH	$(2){3}$	r.t., 2 days	99 (5d)	

The palladium catalyzed reaction is reasonably explained by a catalytic cycle involving a formation of π -allylpalladium intermediate via oxidative addition of the allylic carbon-oxygen bond of **3** on Pd(0) species generated in situ and the subsequent β -elimination of Pd-H. This mechanism is consistent with a finding that 5-methyl-4-carboethoxy oxazoline (**3k**) was completely inert at the reaction conditions.

References and Notes

Table 2.

- a) U. Schöllkopf, Angew. Chem. Int. Ed. Engl., <u>16</u>, 339 (1977).
 b) D. Hoppe, Angew. Chem. Int. Ed. Engl., <u>13</u>, 789 (1974).
- a) K. Matsumoto, M. Suzuki, M. Miyoshi and K. Okumura, Synthesis, <u>1974</u>, 500. b) K. Matsumoto, M. Suzuki and M. Miyoshi, J. Org. Chem., 38, 2094 (1973).
- NMR spectra of oxazolines 3 exhibited two sets of signals corresponding to their trans and cis isomers. Doublet signal (J=ca. 2 Hz) at around δ 7 ppm, which is assigned to -OCH=N-,

appeared at higher magnetic field for the trans isomer. Spectra data are presented for some selected products. **3a** : IR (neat) 1740, 1630 cm⁻¹; NMR (100 MHz, CDCl₂) δ 1.32 and 1.26 (two t, 3H), 1.77 and 1.73 (two d, 3H, J=6.5 Hz), 4.26 (q, 2H), 4.38 and 4.79 (two dd, 1H, J=7.50 and 2.00 Hz for trans-oxazoline, J=10.50 and 2.00 Hz for cis-oxazoline), 5.07 (dd, 1H, J=7.50 and 7.50 Hz), 5.51 and 5.43 (two dd, 1H, J=15.0 and 7.50 Hz), 5.89 (qd, 1H, J=6.50 and 15.0 Hz), 6.94 and 7.03 (two d, 1H, J=2.00 Hz). 3b [bp 100-102°C (1.0 mmHg)]: NMR (CDC1₃) δ 0.95 (t, 3H), 1.35 and 1.30 (two t, 3H), 1.85-2.30 (m, 4H), 4.25 and 4.20 (q, 2H), 4.50-6.80 (m, 4H), 7.00 and 7.08 (two d, 1H, J=1.80 Hz). 3f [bp 95-98° (1.0 mmHg)]: IR (neat) 1740, 1625 cm⁻¹; NMR (CDCl₂) & 1.33 and 1.28 (two t, 3H), 4.32 and 4.25 (two q, 2H), 4.75-6.35 (m, 5H), 7.05 and 7.16 (two d, 1H, J=1.80 Hz). 3g [bp 81-83° (0.1 mmHg]: IR (neat) 1740, 1620 cm⁻¹; NMR (CDCl₂) δ 1.25 and 1.30 (t, 3H), 1.55-2.40 (m, 6H), 4.20 and 4.25 (q, 2H), 4.40 and 4.48 (two d, 1H, J=1.50 Hz), 5.40-6.25 (m, 2H), 6.98 and 7.02 (two d, 1H, J=1.50 Hz). 3i [bp 118-121°C (1.0 mmHg)]: IR (neat) 1735, 1620 cm⁻¹; NMR (CDC1₃) δ 1.30 and 0.80 (two t, 3H), 4.30 (q, 2H), 4.60 and 5.03 (two dd, 1H, J=7.80 and 1.95 Hz for trans-oxazoline, J=11.25 and 1.95 Hz for cis-oxazoline), 5.70 (d, 1H, J=7.80 Hz), 7.10 and 7.25 (two d, 1H, J=1.95 Hz), 7.25-7.50 (broad s, 5H).

- 4) Use of (1R, 2S)-(-)-ephedrine as a chiral amine additive in the reaction of crotonaldehyde with ethyl isocyanoacetate caused some asymmetric induction, which is now intensively being studied.
- 5) T. Saegusa, Y. Ito , H. Kinoshita and S. Tomita, J. Org. Chem., <u>36</u>, 3316 (1971).
- 6) 3m is a 5:3 mixture of the trans and cis isomers. 3m [bp 72-78°C (0.8 mmHg)]: IR (neat) 1750, 1640 cm⁻¹; NMR (CDC1₃) δ 1.30 and 1.25 (two t, 3H), 1.40 and 1.60 (two s, 3H), 4.25 and 4.15 (two q, 2H), 4.53 and 4.42 (two d, 1H, J=1.95 Hz), 5.05-5.50 (m, 2H), 5.85 and 6.15 (two t, 1H, J=10.8 Hz), 7.00 and 7.05 (two d, 1H, J=1.95 Hz). 4: IR (neat) 1735, 1660 cm⁻¹; NMR (CDC1₃) δ 1.25 (t, 3H), 2.13 (s, 3H), 3.04 (d, 2H, J=9.00 Hz), 4.18 (q, 2H), 4.45 (m, 1H), 5.15-5.50 (broad 1H), 7.30 (broad 1H).
- 7) Compound 5 was an inseparable trans and cis mixture. 5a: IR (neat) 3400-3050, 2970, 1700, 1500 cm⁻¹; NMR (CDC1₃) δ 1.35 (t, 3H), 4.30 (q, 2H), 5.40-5.95, 6.20-6.90, 7.65-8.10 (m, 5H), 8.20-8.50 (broad 1H). 5b: IR (neat) 3350-3150, 3150-2850, 1700, 1500 cm⁻¹; NMR (CDC1₃) δ 1.35 (t, 3H), 1.99 (d, 3H), 4.30 (q, 2H), 6.00-6.50, 7.00-8.00 (m, 4H), 8.15-8.50 (broad 1H). 5d: IR (KBr disk) 3250, 2990-2920, 1710, 1660, 1510 cm⁻¹; NMR (CDC1₃) δ 1.25 (t, 3H), 1.55-3.10 (m, 6H), 4.22 (q, 2H), 5.65-6.47 (broad 2H), 7.05-7.57 (broad 1H), 7.81-8.20 (broad 1H).

(Received in Japan 21 September 1985)